A Comprehensive Analysis of Proportional Intensity-Based Software Reliability Models with Covariates

Author:

Li SiqiaoORCID,Dohi Tadashi,Okamura HiroyukiORCID

Abstract

This paper focuses on the so-called proportional intensity-based software reliability models (PI-SRMs), which are extensions of the common non-homogeneous Poisson process (NHPP)-based SRMs, and describe the probabilistic behavior of software fault-detection process by incorporating the time-dependent software metrics data observed in the development process. The PI-SRM is proposed by Rinsaka et al. in the paper “PISRAT: Proportional Intensity-Based Software Reliability Assessment Tool” in 2006. Specifically, we generalize this seminal model by introducing eleven well-known fault-detection time distributions, and investigate their goodness-of-fit and predictive performances. In numerical illustrations with four data sets collected in real software development projects, we utilize the maximum likelihood estimation to estimate model parameters with three time-dependent covariates (test execution time, failure identification work, and computer time-failure identification), and examine the performances of our PI-SRMs in comparison with the existing NHPP-based SRMs without covariates. It is shown that our PI-STMs could give better goodness-of-fit and predictive performances in many cases.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. Handbook of Software Reliability Engineering,1996

2. Software Reliability Measurement, Prediction, Application;Musa,1987

3. Software Reliability;Pham,2000

4. Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures

5. S-Shaped Reliability Growth Modeling for Software Error Detection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. METCN: A Multi-Task Enhanced TCN Model for Software Fault Detection and Correction Prediction;2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C);2023-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3