A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information

Author:

Hu ZhiqiuORCID,Shao Fengjing,Sun Rencheng

Abstract

Traffic flow prediction provides support for travel management, vehicle scheduling, and intelligent transportation system construction. In this work, a graph space–time network (GSTNCNI), incorporating complex network feature information, is proposed to predict future highway traffic flow time series. Firstly, a traffic complex network model using traffic big data is established, the topological features of traffic road networks are then analyzed using complex network theory, and finally, the topological features are combined with graph neural networks to explore the roles played by the topological features of 97 traffic network nodes. Consequently, six complex network properties are discussed, namely, degree centrality, clustering coefficient, closeness centrality, betweenness centrality, point intensity, and shortest average path length. This study improves the graph convolutional neural network based on the above six complex network properties and proposes a graph spatial–temporal network consisting of a combination of several complex network properties. By comparison with existing baselines containing graph convolutional neural networks, it is verified that GSTNCNI possesses high traffic flow prediction accuracy and robustness. In addition, ablation experiments are conducted for six different complex network features to verify the effect of different complex network features on the model’s prediction accuracy. Experimental analysis indicates that the model with combined multiple complex network features has a higher prediction accuracy, and its performance is improved by 31.46% on average, compared with the model containing only one complex network feature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Is the Boston subway a small-world network?

2. The network analysis of urban streets: A dual approach

3. A topological pattern of urban street networks: Universality and peculiarity

4. Invulnerability Simulation Analysis of Urban Public Transit Compound System;Shen;Oper. Res. Manag. Sci.,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3