Research on Semantic Segmentation Method of Macular Edema in Retinal OCT Images Based on Improved Swin-Unet

Author:

Gao Zhijun,Chen Lun

Abstract

Optical coherence tomography (OCT), as a new type of tomography technology, has the characteristics of non-invasive, real-time imaging and high sensitivity, and is currently an important medical imaging tool to assist ophthalmologists in the screening, diagnosis, and follow-up treatment of patients with macular disease. In order to solve the problem of irregular occurrence area of diabetic retinopathy macular edema (DME), multi-scale and multi-region cluster of macular edema, which leads to inaccurate segmentation of the edema area, an improved Swin-Unet networks model was proposed for automatic semantic segmentation of macular edema lesion areas in OCT images. Firstly, in the deep bottleneck of the Swin-Unet network, the Resnet network layer was used to increase the extraction of pairs of sub-feature images. Secondly, the Swin Transformer block and skip connection structure were used for global and local learning, and the regions after semantic segmentation were morphologically smoothed and post-processed. Finally, the proposed method was performed on the macular edema patient dataset publicly available at Duke University, and was compared with previous segmentation methods. The experimental results show that the proposed method can not only improve the overall semantic segmentation accuracy of retinal macular edema, but also further to improve the semantic segmentation effect of multi-scale and multi-region edema regions.

Funder

Research projects of basic scientific research business expenses of provincial colleges and universities in Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3