Block Diagonal Least Squares Regression for Subspace Clustering

Author:

Fan Lili,Lu Guifu,Liu Tao,Wang YongORCID

Abstract

Least squares regression (LSR) is an effective method that has been widely used for subspace clustering. Under the conditions of independent subspaces and noise-free data, coefficient matrices can satisfy enforced block diagonal (EBD) structures and achieve good clustering results. More importantly, LSR produces closed solutions that are easier to solve. However, solutions with block diagonal properties that have been solved using LSR are sensitive to noise or corruption as they are fragile and easily destroyed. Moreover, when using actual datasets, these structures cannot always guarantee satisfactory clustering results. Considering that block diagonal representation has excellent clustering performance, the idea of block diagonal constraints has been introduced into LSR and a new subspace clustering method, which is named block diagonal least squares regression (BDLSR), has been proposed. By using a block diagonal regularizer, BDLSR can effectively reinforce the fragile block diagonal structures of the obtained matrices and improve the clustering performance. Our experiments using several real datasets illustrated that BDLSR produced a higher clustering performance compared to other algorithms.

Funder

National Natural Science Foundation of China

the Science Research Project of Anhui Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Subspace clustering for high dimensional data

2. Sparse subspace clustering;Elhamifar;Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),2009

3. Robust subspace segmentation by low-rank representation;Liu;Proceedings of the 27th International Conference on Machine Learning (ICML),2010

4. Improved nonnegative matrix factorization algorithm for sparse graph regularization;Yang,2021

5. Clustering in pursuit of temporal correlation for human motion segmentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3