Image Denoising Based on GAN with Optimization Algorithm

Author:

Zhu Min-Ling,Zhao Liang-Liang,Xiao Li

Abstract

Image denoising has been a knotty issue in the computer vision field, although the developing deep learning technology has brought remarkable improvements in image denoising. Denoising networks based on deep learning technology still face some problems, such as in their accuracy and robustness. This paper constructs a robust denoising network based on a generative adversarial network (GAN). Since the neural network has the phenomena of gradient dispersion and feature disappearance, the global residual is added to the autoencoder in the generator network, to extract and learn the features of the input image, so as to ensure the stability of the network. On this basis, we proposed an optimization algorithm (OA), to train and optimize the mean and variance of noise on each node of the generator. Then the robustness of the denoising network was improved through back propagation. Experimental results showed that the model’s denoising effect is remarkable. The accuracy of the proposed model was over 99% in the MNIST data set and over 90% in the CIFAR10 data set. The peak signal to noise ratio (PSNR) and structural similarity (SSIM) values of the proposed model were better than the state-of-the-art models in the BDS500 data set. Moreover, an anti-interference test of the model showed that the defense capacities of both the fast gradient sign method (FGSM) and project gradient descent (PGD) attacks were significantly improved, with PSNR and SSIM values decreased by less than 2%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Image Denoising With Deep Convolutional Neural and Multi-Directional Long Short-Term Memory Networks Under Poisson Noise Environments

2. Improved curvature filtering method for strong noise image denoising;Tang;J. Image Graph.,2019

3. Adaptive matching pursuit image denoising algorithm;Li;Comput. Sci.,2020

4. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering

5. A trilateral weighted sparse coding scheme for real-world image denoising;Jun;Proceedings of the European Conference on Computer Vision (ECCV),2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3