FPGA-Based Hardware Accelerator on Portable Equipment for EEG Signal Patterns Recognition

Author:

Xie YuORCID,Majoros Tamás,Oniga Stefan

Abstract

Electroencephalogram (EEG) is a recording of comprehensive reflection of physiological brain activities. Because of many reasons, however, including noises of heartbeat artifacts and muscular movements, there are complex challenges for efficient EEG signal classification. The Convolutional Neural Networks (CNN) is considered a promising tool for extracting data features. A deep neural network can detect the deeper-level features with a multilayer through nonlinear mapping. However, there are few viable deep learning algorithms applied to BCI systems. This study proposes a more effective acquisition and processing HW-SW method for EEG biosignal. First, we use a consumer-grade EEG acquisition device to record EEG signals. Short-time Fourier transform (STFT) and Continuous Wavelet Transform (CWT) methods will be used for data preprocessing. Compared with other algorithms, the CWT-CNN algorithm shows a better classification accuracy. The research result shows that the best classification accuracy of the CWT-CNN algorithm is 91.65%. On the other side, CNN inference requires many convolution operations. We further propose a lightweight CNN inference hardware accelerator framework to speed up inference calculation, and we verify and evaluate its performance. The proposed framework performs network tasks quickly and precisely while using less logical resources on the PYNQ-Z2 FPGA development board.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference33 articles.

1. Brain-Computer Interfaces in Medicine

2. Music Stimuli Recognition in Electroencephalogram Signal

3. Non invasive brain-machine interfaces;Carpi;ESA Ariadna Study,2006

4. Deep learning EEG response representation for brain computer interface;Jingwei;Proceedings of the 2015 34th Chinese Control Conference (CCC),2015

5. A high-efficiency runtime reconfigurable IP for CNN acceleration on a mid-range all-programmable SoC;Meloni;Proceedings of the 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig),2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3