TMCS-ENN: A Temporal Feature-Correlation Cuckoo Search-Elman Neural Network for Sugar Raw Materials Demands Prediction

Author:

Cui Haibo,Zhou Yuqi,Liu WeimingORCID,Li Yangying,Chen Zhijun,He Du

Abstract

The prediction of the demand for raw materials is of vital importance to modern industries. Most studies are based on traditional regression, linear programming, and other methods. Previous studies have often overlooked the characteristics of the sugar raw materials business and the influence of time factors on raw material demand, resulting in limited prediction accuracy. How to accurately predict the demand for sugar raw materials is one of the key issues for intelligent management. In view of the above problems, combined with the characteristics of the supply and demand cycle of sugar raw materials, this paper aims to predict the demand for raw materials based on their supply and demand in a real sugar company by optimizing the Elman neural network through the modified cuckoo search (MCS) algorithm with temporal features. This study proposes a temporal feature-correlation cuckoo search–Elman neural network (TMCS-ENN) for predicting the demand for sugar raw materials. The experimental results show that the accuracy of the TMCS-ENN model reaches 93.89%, a better performance than that achieved by existing models. Therefore, the study model effectively improves the accuracy of the demand forecast of sugar raw materials for companies. This output will be helpful for improving the production efficiency and automation level, as well as reducing costs.

Funder

Natural Science Foundation Item

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate bearing capacity prediction method and sensitivity analysis of PBL;Engineering Applications of Artificial Intelligence;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3