Application of Generative Adversarial Network and Diverse Feature Extraction Methods to Enhance Classification Accuracy of Tool-Wear Status

Author:

Chen Bo-Xiang,Chen Yi-ChungORCID,Loh Chee-Hoe,Chou Ying-Chun,Wang Fu-Cheng,Su Chwen-Tzeng

Abstract

The means of accurately determining tool-wear status has long been important to manufacturers. Tool-wear status classification enables factories to avoid the unnecessary costs incurred by replacing tools too early and to prevent product damage caused by overly worn tools. While researchers have examined this topic for over a decade, most existing studies have focused on model development but have neglected two fundamental issues in machine learning: data imbalance and feature extraction. In view of this, we propose two improvements: (1) using a generative adversarial network to generate realistic computer numerical control machine vibration data to overcome data imbalance and (2) extracting features in the time domain, the frequency domain, and the time–frequency domain simultaneously for modeling and integrating these in an ensemble model. The experiment results demonstrate how both proposed modifications are reasonable and valid.

Funder

Ministry of science and technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3