Estimation of Demographic Traits of the Deputies through Parliamentary Debates Using Machine Learning

Author:

Polat HuseyinORCID,Korpe MesutORCID

Abstract

One of the most impressive applications of the combined use of natural language processing (NLP), classical machine learning, and deep learning (DL) approaches is the estimation of demographic traits from the text. Author Profiling (AP) is the analysis of a text to identify the demographics or characteristics of its author. So far, most researchers in this field have focused on using social media data in the English language. This article aims to expand the predictive potential of demographic traits by focusing on a more diverse dataset and language. Knowing the background of deputies is essential for citizens, political scientists and policymakers. In this study, we present the application of NLP and machine learning (ML) approaches to Turkish parliamentary debates to estimate the demographic traits of the deputies. Seven traits were determined: gender, age, education, occupation, election region, party, and party status. As a first step, a corpus was compiled from Turkish parliamentary debates between 2012 and 2020. Document representations (feature extraction) were performed using various NLP techniques. Then, we created sub-datasets containing the extracted features from the corpus. These sub-datasets were used by different ML classification algorithms. The best classification accuracy rates were more than 31%, 27%, 35%, 41%, 29%, 59%, and 32% according to the majority baseline for gender, age, education, occupation, election region, party, and party status, respectively. The experimental results show that the demographics of deputies can be estimated effectively using NLP, classical ML, and DL approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference76 articles.

1. Overview of the 3rd Author Profiling Task at PAN 2015;Rangel;Proceedings of the CLEF 2015 Evaluation Labs and Workshop,2015

2. Gender and genre variation in weblogs

3. Authorship attribution

4. A survey of modern authorship attribution methods

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3