A Sustainable Deep Learning-Based Framework for Automated Segmentation of COVID-19 Infected Regions: Using U-Net with an Attention Mechanism and Boundary Loss Function

Author:

Ahmed ImranORCID,Chehri AbdellahORCID,Jeon GwanggilORCID

Abstract

COVID-19 has been spreading rapidly, affecting billions of people globally, with significant public health impacts. Biomedical imaging, such as computed tomography (CT), has significant potential as a possible substitute for the screening process. Because of this, automatic segmentation of images is highly desirable as clinical decision support for an extensive evaluation of disease control and monitoring. It is a dynamic tool and performs a central role in precise or accurate segmentation of infected areas or regions in CT scans, thus helping in screening, diagnosing, and disease monitoring. For this purpose, we introduced a deep learning framework for automated segmentation of COVID-19 infected lesions/regions in lung CT scan images. Specifically, we adopted a segmentation model, i.e., U-Net, and utilized an attention mechanism to enhance the framework’s ability for the segmentation of virus-infected regions. Since all of the features extracted or obtained from the encoders are not valuable for segmentation; thus, we applied the U-Net architecture with a mechanism of attention for a better representation of the features. Moreover, we applied a boundary loss function to deal with small and unbalanced lesion segmentation’s. Using different public CT scan image data sets, we validated the framework’s effectiveness in contrast with other segmentation techniques. The experimental outcomes showed the improved performance of the presented framework for the automated segmentation of lungs and infected areas in CT scan images. We also considered both boundary loss and weighted binary cross-entropy dice loss function. The overall dice accuracies of the framework are 0.93 and 0.76 for lungs and COVID-19 infected areas/regions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3