Optimizing the Quantum Circuit for Solving Boolean Equations Based on Grover Search Algorithm

Author:

Liu Hui,Li Fukun,Fan Yilin

Abstract

The solution of nonlinear Boolean equations in a binary field plays a crucial part in cryptanalysis and computational mathematics. To speed up the process of solving Boolean equations is an urgent task that needs to be addressed. In this paper, we propose a method for solving Boolean equations based on the Grover algorithm combined with preprocessing using classical algorithms, optimizing the quantum circuit for solving the equations, and implementing the automatic generation of quantum circuits. The method first converted Boolean equations into Boolean expressions to construct the oracle in the Grover algorithm. The quantum circuit was emulated based on the IBM Qiskit framework and then simulated the Grover algorithm on this basis. Finally, the solution of the Boolean equation was implemented. The experimental results proved the feasibility of using the Grover algorithm to solve nonlinear Boolean equations in a binary field, and the correct answer was successfully found under the conditions that the search space was 221 and three G iterations were used. The method in this paper increases the solving scale and solving speed of Boolean equations and enlarges the application area of the Grover algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference25 articles.

1. Quantum theory, the Church–Turing principle and the universal quantum computer;Deutsch;Proc. R. Soc. Lond. A. Math. Phys. Sci.,1985

2. Rapid solution of problems by quantum computation;Deutsch;Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.,1992

3. Algorithms for quantum computation: Discrete logarithms and factoring;Shor;Proceedings of the 35th Annual Symposium on Foundations of Computer Science,1994

4. Quantum Mechanics Helps in Searching for a Needle in a Haystack

5. Analog analogue of a digital quantum computation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Computing Based Gate Level Optimizer for Digital Electronics;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3