Abstract
This paper aims to present a unified overview of the main Very Large-Scale Integration (VLSI) implementation solutions of forward and inverse discrete sine transforms using systolic arrays. The main features of the most important solutions to implement the forward and inverse discrete sine transform (DST) using systolic arrays are presented. One of the central ideas presented in the paper is to emphasize the advantages of using regular and modular systolic array computational structures such as cyclic convolution, circular correlation, and pseudo-band correlation in the VLSI implementation of these transforms. The use of such computational structures leads to architectures well adapted to the features of VLSI technologies, with an efficient use of the hardware structures and a reduced I/O cost that helps avoiding the so-called I/O bottleneck. With the techniques presented in this review, we have developed a new VLSI implementation of the DST using systolic arrays that allow efficient hardware implementation with reduced complexity while maintaining high-speed performances. Using a new restructuring input sequence, we have been able to efficiently reformulate the computation of the forward DST transform into a special computational structure using eight short quasi-cycle convolutions that can be computed with low complexity and where some of the coefficients are identical. This leads to a hardware structure with high throughput. The new restructuring sequence is the use of the input samples in a natural order as opposed to previous solutions, leading to a significant reduction of the hardware complexity in the pre-processing stage due to avoiding a permutation stage to reverse the order. Moreover, the proposed VLSI architecture allows an efficient incorporation of the obfuscation technique with very low overheads.
Funder
Ministerul Cercetării și Inovării
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference64 articles.
1. The World’s Technological Capacity to Store, Communicate, and Compute Information
2. The Rise of Visual Content Online
https://sloanreview.mit.edu/article/the-rise-of-visual-content-online/
3. A Fast Karhunen-Loeve Transform for a Class of Random Processes
4. Discrete Cosine Transform
5. Fundamentals of Digital Image Processing;Jain,1989
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献