Abstract
The chip manufacturing of integrated circuits requires the participation of multiple parties, which greatly increases the possibility of hardware Trojan insertion and poses a significant threat to the entire hardware device landing; however, traditional hardware Trojan detection methods require gold chips, so the detection cost is relatively high. The attention mechanism can extract data with more adequate features, which can enhance the expressiveness of the network. This paper combines an attention module with a multilayer perceptron and convolutional neural network for hardware Trojan detection based on side-channel information, and evaluates the detection results by implementing specific experiments. The results show that the proposed method significantly outperforms machine learning classification methods and network-related methods, such as SVM and KNN, in terms of accuracy, precision, recall, and F1 value. In addition, the proposed method is effective in detecting data containing one or multiple hardware Trojans, and shows high sensitivity to the size of datasets.
Funder
Natural Science Foundation of Tianjin
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献