A Hybrid ARIMA-GABP Model for Predicting Sea Surface Temperature

Author:

Chen Xiangyi,Li Qinrou,Zeng Xianghai,Zhang Chuyi,Xu GuangjunORCID,Wang GuanchengORCID

Abstract

Sea surface temperature (SST) is one of the most important parameters in air–sea interaction, and its accurate prediction is of great significance in the study of global climate change. However, SST is affected by heat flux, ocean dynamic processes, cloud coverage, and other factors, which means it contains linear and nonlinear components. Existing prediction models, especially single prediction models, cannot effectively handle these linear and nonlinear components in the meantime, degrading their accuracy concerning the prediction of SST. To remedy this weakness, this paper proposes a novel prediction model by the Lagrange multiplier method to combine the auto-regressive integrated moving average (ARIMA) model and the back propagation (BP) neural network model, where these two models have superior prediction performance for linear and nonlinear components, respectively. Moreover, the genetic algorithm is exploited to construct the genetic algorithm BP (GABP) neural network to further improve the performance of the proposed model. To verify the effectiveness of the proposed model, experiments predicting the SST based on historic time-series data are performed. The experiment results indicate that the mean absolute error (MAE) of the ARIMA-GABP model is only 0.3033 °C and the root mean square error (RMSE) is 0.3970 °C, which is better than the ARIMA model, BP neural network model, long short-term memory (LSTM) model, GABP neural network model, and ensemble empirical model decomposition BP model among various datasets. Therefore, the proposed model has superior and robust performance concerning predicting SST.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. RSST-ARGM: a data-driven approach to long-term sea surface temperature prediction

2. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach

3. Seasonal ARIMA for forecasting sea surface temperature of the north zone of the Bay of Bengal;Karim;Res. Rev. J. Stat.,2013

4. Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature

5. Several statistical models to predict tropical indian ocean sea surface temperature anomaly;Fang;J. Mar. Sci.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3