Motor-Imagery Classification Using Riemannian Geometry with Median Absolute Deviation

Author:

Miah Abu Saleh MusaORCID,Rahim Md AbdurORCID,Shin JungpilORCID

Abstract

Motor imagery (MI) from human brain signals can diagnose or aid specific physical activities for rehabilitation, recreation, device control, and technology assistance. It is a dynamic state in learning and practicing movement tracking when a person mentally imitates physical activity. Recently, it has been determined that a brain–computer interface (BCI) can support this kind of neurological rehabilitation or mental practice of action. In this context, MI data have been captured via non-invasive electroencephalogram (EEGs), and EEG-based BCIs are expected to become clinically and recreationally ground-breaking technology. However, determining a set of efficient and relevant features for the classification step was a challenge. In this paper, we specifically focus on feature extraction, feature selection, and classification strategies based on MI-EEG data. In an MI-based BCI domain, covariance metrics can play important roles in extracting discriminatory features from EEG datasets. To explore efficient and discriminatory features for the enhancement of MI classification, we introduced a median absolute deviation (MAD) strategy that calculates the average sample covariance matrices (SCMs) to select optimal accurate reference metrics in a tangent space mapping (TSM)-based MI-EEG. Furthermore, all data from SCM were projected using TSM according to the reference matrix that represents the featured vector. To increase performance, we reduced the dimensions and selected an optimum number of features using principal component analysis (PCA) along with an analysis of variance (ANOVA) that could classify MI tasks. Then, the selected features were used to develop linear discriminant analysis (LDA) training for classification. The benchmark datasets were considered for the evaluation and the results show that it provides better accuracy than more sophisticated methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3