Abstract
Low-voltage compact gyrotron is under development at the University of Electronic Science and Technology of China (UESTC) for industrial applications. Due to the low operating voltage, the relativistic factor is weak, and interaction efficiency could not be high. Therefore, a magnetron-injection gun (MIG) with an extremely high-velocity ratio α (around 2.5) is selected to improve the interaction efficiency. As beam voltage drops, space charge effects become more and more obvious, thus a more detailed analysis of velocity-ratio α is significant to perform low-voltage gyrotrons, including beam voltage, beam current, modulating voltage, depression voltage, cathode magnetic field, and magnetic depression ratio. Theoretical analysis and simulation optimization are adopted to demonstrate the feasibility of an ultra-high velocity ratio, which considers the space charge effects. Based on theoretical analysis, an electron gun with a transverse to longitudinal velocity ratio 2.55 and velocity spread 9.3% is designed through simulation optimization. The working voltage and current are 10 kV and 0.46 A with cathode emission density 1 A/cm2 for a 75 GHz hundreds of watts’ output power gyrotron.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献