Atmospheric Effects on OFDM Wireless Links Operating in the Millimeter Wave Regime

Author:

Golovachev YosefORCID,Pinhasi Gad A.ORCID,Pinhasi Yosef

Abstract

The development of millimeter wave communication links and the allocation of bands within the Extremely High Frequency (EHF) range for the next generation cellular network present significant challenges due to the unique propagation effects emerging in this regime of frequencies. This includes susceptibility to amplitude and phase distortions caused by weather conditions. In the current paper, the widely used Orthogonal Division Frequency Multiplexing (OFDM) transmission scheme is tested for resilience against weather-induced attenuation and phase shifts, focusing on the effect of rainfall rates. Operating frequency bands, channel bandwidth, and other modulation parameters were selected according to the 3rd Generation Partnership Project (3GPP) Technical Specification. The performance and the quality of the wireless link is analyzed via constellation diagram and BER (Bit Error Rate) performance chart. Simulation results indicate that OFDM channel performance can be significantly improved by consideration of the local atmospheric conditions while decoding the information by the receiver demodulator. It is also demonstrated that monitoring the weather conditions and employing a corresponding phase compensation assist in the correction of signal distortions caused by the atmospheric dispersion, and consequently leads to a lower bit error rate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3