Lossy Hyperspectral Image Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform

Author:

Barrios YubalORCID,Rodríguez AlfonsoORCID,Sánchez AntonioORCID,Pérez ArturoORCID,López SebastiánORCID,Otero AndrésORCID,de la Torre EduardoORCID,Sarmiento RobertoORCID

Abstract

This paper describes a novel hardware implementation of a lossy multispectral and hyperspectral image compressor for on-board operation in space missions. The compression algorithm is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless standard that includes a bit-rate control stage, which in turn manages the losses the compressor may introduce to achieve higher compression ratios without compromising the recovered image quality. The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design productivity by raising the abstraction level. The proposed lossy compression solution is deployed onto ARTICo3, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy). The whole compression solution is tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using different input images, from multispectral to ultraspectral. For images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version of the algorithm running in an ARM Cortex-A53 processor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects;Computers and Electronics in Agriculture;2024-07

2. A Hybrid Approach for Data Hiding using Twofish Algorithm and Compression Steganography Techniques;Journal of Innovative Image Processing;2023-09

3. FPGA-Based Hyperspectral Lossy Compressor With Adaptive Distortion Feature for Unexpected Scenarios;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

4. Recent techniques for hyperspectral image enhancement;Digital Image Enhancement and Reconstruction;2023

5. Robust Spectral Based Compression of Hyperspectral Images using LSTM Autoencoders;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3