Protein Subnuclear Localization Based on Radius-SMOTE and Kernel Linear Discriminant Analysis Combined with Random Forest

Author:

Wu LiwenORCID,Huang ShanshanORCID,Wu Feng,Jiang Qian,Yao Shaowen,Jin Xin

Abstract

Protein subnuclear localization plays an important role in proteomics, and can help researchers to understand the biologic functions of nucleus. To date, most protein datasets used by studies are unbalanced, which reduces the prediction accuracy of protein subnuclear localization—especially for the minority classes. In this work, a novel method is therefore proposed to predict the protein subnuclear localization of unbalanced datasets. First, the position-specific score matrix is used to extract the feature vectors of two benchmark datasets and then the useful features are selected by kernel linear discriminant analysis. Second, the Radius-SMOTE is used to expand the samples of minority classes to deal with the problem of imbalance in datasets. Finally, the optimal feature vectors of the expanded datasets are classified by random forest. In order to evaluate the performance of the proposed method, four index evolutions are calculated by Jackknife test. The results indicate that the proposed method can achieve better effect compared with other conventional methods, and it can also improve the accuracy for both majority and minority classes effectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3