Abstract
Protein subnuclear localization plays an important role in proteomics, and can help researchers to understand the biologic functions of nucleus. To date, most protein datasets used by studies are unbalanced, which reduces the prediction accuracy of protein subnuclear localization—especially for the minority classes. In this work, a novel method is therefore proposed to predict the protein subnuclear localization of unbalanced datasets. First, the position-specific score matrix is used to extract the feature vectors of two benchmark datasets and then the useful features are selected by kernel linear discriminant analysis. Second, the Radius-SMOTE is used to expand the samples of minority classes to deal with the problem of imbalance in datasets. Finally, the optimal feature vectors of the expanded datasets are classified by random forest. In order to evaluate the performance of the proposed method, four index evolutions are calculated by Jackknife test. The results indicate that the proposed method can achieve better effect compared with other conventional methods, and it can also improve the accuracy for both majority and minority classes effectively.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献