EM-Sign: A Non-Contact Recognition Method Based on 24 GHz Doppler Radar for Continuous Signs and Dialogues

Author:

Ye Linting,Lan ShengchangORCID,Zhang Kang,Zhang Guiyuan

Abstract

We studied continuous sign language recognition using Doppler radar sensors. Four signs in Chinese sign language and American sign language were captured and extracted by complex empirical mode decomposition (CEMD) to obtain spectrograms. Image sharpening was used to enhance the micro-Doppler signatures of the signs. To classify the different signs, we utilized an improved Yolov3-tiny network by replacing the framework with ResNet and fine-tuned the network in advance. This method can remove the epentheses from the training process. Experimental results revealed that the proposed method can surpass the state-of-the-art sign language recognition methods in continuous sign recognition with a precision of 0.924, a recall of 0.993, an F1-measure of 0.957 and a mean average precision (mAP) of 0.99. In addition, dialogue recognition in three daily conversation scenarios was performed and evaluated. The average word error rate (WER) was 0.235, 10% lower than in of other works. Our work provides an alternative form of sign language recognition and a new approach to simplify the training process and achieve a better continuous sign language recognition effect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3