Affiliation:
1. School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract
This paper investigates the impacts of element grouping on the covert communication performance of an active reconfigurable intelligent surface (ARIS)-aided uplink non-orthogonal multiple access (NOMA) system. Through element grouping, each element of the ARIS works in either the reflecting mode to reflect the information signal or the jamming mode to generate a jamming signal. Optimizing the NOMA transmit power, ARIS beamforming, and receive beamforming jointly is necessary to maximize the covert communication rate. To tackle the unsolvable covert communication rate maximization problem, we decouple the original problem into three sub-problems of optimizing the NOMA transmit power, ARIS beamforming, and receive beamforming, respectively. To tackle the mixed-integer non-linear programming for the element grouping, we introduce the arithmetic- and geometric-mean-based penalty term and apply the Dinkelbach transform to reformulate the optimization problem. Next, we propose an alternating optimization algorithm to optimize the system parameters. The numerical results demonstrate the effectiveness of the element grouping in improving the covert communication rate. However, the element grouping scheme achieves a lower covert communication rate performance compared to the scheme without element grouping, indicating that using element grouping for covert communications in the ARIS-aided uplink NOMA system is not the preferred option.
Funder
National Natural Science Foundation of China