Covert Communications in Active-RIS-Aided NOMA Systems: Element Grouping or Not?

Author:

Kang Xueyu1,Lu Feng1,Zhu Miaomiao1,Liu Hongwu1,Pang Xiyu1,Yang Hai1,Zeng Qingsheng2

Affiliation:

1. School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China

2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

This paper investigates the impacts of element grouping on the covert communication performance of an active reconfigurable intelligent surface (ARIS)-aided uplink non-orthogonal multiple access (NOMA) system. Through element grouping, each element of the ARIS works in either the reflecting mode to reflect the information signal or the jamming mode to generate a jamming signal. Optimizing the NOMA transmit power, ARIS beamforming, and receive beamforming jointly is necessary to maximize the covert communication rate. To tackle the unsolvable covert communication rate maximization problem, we decouple the original problem into three sub-problems of optimizing the NOMA transmit power, ARIS beamforming, and receive beamforming, respectively. To tackle the mixed-integer non-linear programming for the element grouping, we introduce the arithmetic- and geometric-mean-based penalty term and apply the Dinkelbach transform to reformulate the optimization problem. Next, we propose an alternating optimization algorithm to optimize the system parameters. The numerical results demonstrate the effectiveness of the element grouping in improving the covert communication rate. However, the element grouping scheme achieves a lower covert communication rate performance compared to the scheme without element grouping, indicating that using element grouping for covert communications in the ARIS-aided uplink NOMA system is not the preferred option.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3