Compact, Ultra-Wideband Butler Matrix Beamformers for the Advanced 5G Band FR3—Part I

Author:

Empliouk Tzichat1ORCID,Kapetanidis Panagiotis1,Arnaoutoglou Dimitrios1ORCID,Kolitsidas Christos2,Lialios Dimitrios3,Koutinos Anastasios3ORCID,Kaifas Theodoros N. F.1,Georgakopoulos Stavros V.3,Zekios Constantinos L.3ORCID,Kyriacou George A.1

Affiliation:

1. Department of Electrical & Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

2. Buissiness Area Networks, Technology & Strategy, Standardts & Technology, Radio & Antennas, Radio Antennas & Algorithms, Ericsson, 16480 Stockholm, Sweden

3. College of Engineering & Computing, Florida International University, Miami, FL 33174, USA

Abstract

Butler Matrix networks are well established as beamforming networks for phased antenna arrays. The challenge we address in this work is to cover the entire (advanced 5G or 6G) FR3 band (7–24 GHz) with a single network, while retaining low losses and minimal size. The employed multilayer topology is also well established; however, the matching between the utilized hybrid couplers and the phase shifters constitutes a major challenge for such a wideband operation. This is achieved herein by employing meander lines with appropriate curvature and introducing two distinct design methods for the Butler Matrix. The first method focuses on designing individual components separately, followed by their integration into the overall Butler Matrix structure. This approach is demonstrated through the design, prototyping, measurements, and validation of an 8 × 8 Butler Matrix beamformer, which operates across the 6–16 GHz band (FR3 Low). The second method introduces a wideband-matching technique which simplifies the implementation process by designing the Butler Matrix as a single, unified structure. This technique is applied to both 4 × 4 and 8 × 8 Butler Matrices, which are implemented and simulated for the low FR3 band. Both design methods result in wideband operation and compact size and meet the desired performance criteria.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3