A Fast Operation Method for Predicting Stress in Nonlinear Boom Structures Based on RS–XGBoost–RF Model

Author:

Dong Qing1ORCID,Su Youcheng1,Xu Gening1,She Lingjuan2,Chang Yibin1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. Academia Sinica, Zoomlion Heavy Industry Science and Technology Co., Ltd., Changsha 410000, China

Abstract

The expeditious and precise prediction of stress variations in nonlinear boom structures is paramount for ensuring the safe, dependable, and effective operation of pump trucks. Nonetheless, balancing prediction accuracy and efficiency by constructing a suitable machine-learning model remains a challenge in engineering practice. To this end, this paper introduces an interpretable fusion model named RS–XGBoost–RF (Random Search–Extreme Gradient Boosting Tree–Random Forest) and develops an intelligent algorithm for the stress prediction of the nonlinear boom structure of concrete pump trucks. Firstly, an information acquisition system is deployed to collect relevant data from the boom systems of ZLJ5440THBBF 56X-6RZ concrete pump trucks during its operational phase. Data pre-processing is conducted on the 2.4 million sets of acquired data. Then, a sample dataset of typical working conditions is obtained. Secondly, the RS algorithm, RF model, and XGBoost model are selected based on their complementary strengths to construct the fusion model. The model fusion condition is established with a focus on prediction efficiency. By leveraging the synergy between search and prediction mechanisms, the RS–XGBoost model is constructed for the prediction of the master hyperparameters of the RF model. This model uses the random search (RS) process to obtain the mapping between the loss function and the hyperparameters. This mapping relationship is then learned using the XGBoost model, and the hyperparameter value with the smallest loss value is predicted. Finally, the RS–XGBoost–RF model with optimized hyperparameters is employed to achieve rapid stress prediction at various detection points of the nonlinear boom structure. The findings demonstrate that, within the acceptable prediction efficiency for engineering practice, the fitting accuracy (R2) of the RS–XGBoost–RF model consistently exceeds 0.955 across all measurement points, with only a few exceptions. Concerning the stress magnitudes themselves, the mean absolute error (MAE) and root mean square error (RMSE) are maintained within the ranges of 2.22% to 3.91% and 4.79% to 7.85%, respectively. In comparison with RS–RF–RF, RS–RF–XGBoost, and RS–XGBoost–XGBoost, the proposed model exhibits the optimal prediction performance. The method delineated in this paper offers valuable insights for expeditious structural stress prediction in the realm of inherent safety within construction machinery.

Funder

State Key Laboratory of Crane Technology

National Key Laboratory of Market Regulation

Publisher

MDPI AG

Reference57 articles.

1. CFD-DEM simulation research on optimization of spatial attitude of concrete pumping boom based on evaluation of minimum pressure loss;Jiang;Powder Technol.,2022

2. Semi-autonomous operation of a mobile concrete pump;Meiringer;Autom. Constr.,2023

3. A boom damage prediction framework of wheeled cranes combining hybrid features of acceleration and Gaussian process regression;Yuying;Measurement,2023

4. (2008). Design Rules for Cranes (Standard No. GB/T 3811-2008).

5. Applicability analysis of theoretical method for crane boom stress;Wang;Chin. J. Constr. Mach.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3