Proposing an Efficient Deep Learning Algorithm Based on Segment Anything Model for Detection and Tracking of Vehicles through Uncalibrated Urban Traffic Surveillance Cameras

Author:

Shokri Danesh12ORCID,Larouche Christian12ORCID,Homayouni Saeid23ORCID

Affiliation:

1. Département des Sciences Géomatiques, Université Laval, Québec, QC G1V 0A6, Canada

2. Centre de Recherche en Données et Intelligence Géospatiales (CRDIG), Université Laval, Québec, QC G1V 0A6, Canada

3. Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC G1K 9A9, Canada

Abstract

In this study, we present a novel approach leveraging the segment anything model (SAM) for the efficient detection and tracking of vehicles in urban traffic surveillance systems by utilizing uncalibrated low-resolution highway cameras. This research addresses the critical need for accurate vehicle monitoring in intelligent transportation systems (ITS) and smart city infrastructure. Traditional methods often struggle with the variability and complexity of urban environments, leading to suboptimal performance. Our approach harnesses the power of SAM, an advanced deep learning-based image segmentation algorithm, to significantly enhance the detection accuracy and tracking robustness. Through extensive testing and evaluation on two datasets of 511 highway cameras from Quebec, Canada and NVIDIA AI City Challenge Track 1, our algorithm achieved exceptional performance metrics including a precision of 89.68%, a recall of 97.87%, and an F1-score of 93.60%. These results represent a substantial improvement over existing state-of-the-art methods such as the YOLO version 8 algorithm, single shot detector (SSD), region-based convolutional neural network (RCNN). This advancement not only highlights the potential of SAM in real-time vehicle detection and tracking applications, but also underscores its capability to handle the diverse and dynamic conditions of urban traffic scenes. The implementation of this technology can lead to improved traffic management, reduced congestion, and enhanced urban mobility, making it a valuable tool for modern smart cities. The outcomes of this research pave the way for future advancements in remote sensing and photogrammetry, particularly in the realm of urban traffic surveillance and management.

Funder

Mitacs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3