Maritime Electro-Optical Image Object Matching Based on Improved YOLOv9

Author:

Yang Shiman1,Cao Zheng2,Liu Ningbo2,Sun Yanli2,Wang Zhongxun1

Affiliation:

1. School of Physics and Electronic Information, Yantai University, Yantai 264005, China

2. Information Fusion Institute, Naval Aviation University, Yantai 264001, China

Abstract

The offshore environment is complex during automatic target annotation at sea, and the difference between the focal lengths of visible and infrared sensors is large, thereby causing difficulties in matching multitarget electro-optical images at sea. This study proposes a target-matching method for visible and infrared images at sea based on decision-level topological relations. First, YOLOv9 is used to detect targets. To obtain markedly accurate target positions to establish accurate topological relations, the YOLOv9 model is improved for its poor accuracy for small targets, high computational complexity, and difficulty in deployment. To improve the detection accuracy of small targets, an additional small target detection head is added to detect shallow feature maps. From the perspective of reducing network size and achieving lightweight deployment, the Conv module in the model is replaced with DWConv, and the RepNCSPELAN4 module in the backbone network is replaced with the C3Ghost module. The replacements significantly reduce the number of parameters and computation volume of the model while retaining the feature extraction capability of the backbone network. Experimental results of the photovoltaic dataset show that the proposed method improves detection accuracy by 8%, while the computation and number of parameters of the model are reduced by 5.7% and 44.1%, respectively. Lastly, topological relationships are established for the target results, and targets in visible and infrared images are matched based on topological similarity.

Funder

National Natural Science Foundation of China

Taishan Scholar Project

Fund Project of National Defense Key Laboratory of Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3