Affiliation:
1. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Abstract
The cascaded H-bridge (CHB) inverter has become pivotal in grid-connected photovoltaic (PV) systems owing to its numerous benefits. Typically, DC–DC converters are employed to boost the input voltage in grid-connected systems to meet the grid’s higher voltage requirements, but this approach increases equipment size and cost. To enhance inverter efficiency, this paper proposes a boost-type, three-phase CHB PV grid-connected inverter. This design can raise the input voltage and satisfy grid requirements with only a few additional components. Additionally, PV environmental fluctuations can cause variations in PV power generation, leading to a power imbalance in the inverter and potentially affecting the stability of the PV system. Based on this, we consider grid voltage fluctuations induced by unbalanced power output from the inverter and propose an improved control method based on the superposition of zero-sequence components. Finally, we construct a simulation model and conduct experimental verification using the MATLAB/Simulink platform. The validation results demonstrate that this topology reduces equipment volume and effectively enhances the efficiency of PV power generation systems. Furthermore, the designed control method ensures system stability while effectively mitigating power imbalances caused by PV module and grid voltage fluctuations.
Funder
Natural Science Foundation of Shaanxi Province, China