CFE-YOLOv8s: Improved YOLOv8s for Steel Surface Defect Detection

Author:

Yang Shuxin1,Xie Yang1,Wu Jianqing1ORCID,Huang Weidong1,Yan Hongsheng2,Wang Jingyong2,Wang Bi1,Yu Xiangchun1ORCID,Wu Qiang3,Xie Fei4

Affiliation:

1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Longnan Dingtai Electronic Technology Co., Ltd., Longnan 341700, China

3. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610000, China

4. School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310000, China

Abstract

Due to the low detection accuracy in steel surface defect detection and the constraints of limited hardware resources, we propose an improved model for steel surface defect detection, named CBiF-FC-EFC-YOLOv8s (CFE-YOLOv8s), including CBS-BiFormer (CBiF) modules, Faster-C2f (FC) modules, and EMA-Faster-C2f (EFC) modules. Firstly, because of the potential information loss that convolutional neural networks (CNN) may encounter when dealing with miniature targets, the CBiF combines CNN with Transformer to optimize local and global features. Secondly, to address the increased computational complexity caused by the extensive use of convolutional layers, the FC uses the FasterNet block to reduce redundant computations and memory access. Lastly, the EMA is incorporated into the FC to design the EFC module and enhance feature fusion capability while ensuring the light weight of the model. CFE-YOLOv8s achieves mAP@0.5 values of 77.8% and 69.5% on the NEU-DET and GC10-DET datasets, respectively, representing enhancements of 3.1% and 2.8% over YOLOv8s, with reductions of 22% and 18% in model parameters and FLOPS. The CFE-YOLOv8s demonstrates superior overall performance and balance compared to other advanced models.

Funder

Jiangxi Provincial Natural Science Foundation

Science and Technology Research Project of Jiangxi Provincial Department of Education

Publisher

MDPI AG

Reference37 articles.

1. Machine learning-based imaging system for surface defect inspection;Park;Int. J. Precis. Eng. Manuf.-Green Technol.,2016

2. An efficient lightweight convolutional neural network for industrial surface defect detection;Zhang;Artif. Intell. Rev.,2023

3. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns;Ojala;IEEE Trans. Pattern Anal. Mach. Intell.,2002

4. Dalal, N., and Triggs, B. (2005, January 25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

5. Support vector machines;Hearst;IEEE Intell. Syst. Their Appl.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3