Affiliation:
1. School of Automobile and Transportation, Chengdu Technological University, Chengdu 611730, China
Abstract
To fully unleash the performance potential of the Wheel Drive Driverless Vehicle (WDDV) and enhance its handling stability across a wide range of extreme operating conditions, this paper proposes a novel approach for designing a multi-directional motion coupling control system. Firstly, an analysis of the unmanned driving modes of the WDDV is conducted, followed by the establishment of a method for defining the control target parameter set for handling stability. Subsequently, a coupled dynamic model that considers the wheel drive counter force is developed. Building this model, a method for estimating the handling stability state is introduced, focusing on improving both handling and stability aspects. Furthermore, by combining the sliding mode control algorithm with the coupled dynamic model, a design methodology for a multi-directional motion coupling control law that adapts to extreme operating conditions is proposed. Finally, through comprehensive simulation experiments and testbed, the effectiveness of the proposed multi-directional motion coupling control system is validated, demonstrating superior handling stability compared to the decoupled control system.
Funder
Talent Project of Chengdu Technological University
Science Laboratory Open Fund Project of Chengdu Technological University