Multi-Source Information Graph Embedding with Ensemble Learning for Link Prediction

Author:

Hou Chunning1ORCID,Wang Xinzhi1ORCID,Luo Xiangfeng1ORCID,Xie Shaorong1ORCID

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Abstract

Link prediction is a key technique for connecting entities and relationships in a graph reasoning field. It leverages known information about the graph structure data to predict missing factual information. Previous studies have either focused on the semantic representation of a single triplet or on the graph structure data built on triples. The former ignores the association between different triples, and the latter ignores the true meaning of the node itself. Furthermore, common graph-structured datasets inherently face challenges, such as missing information and incompleteness. In light of this challenge, we present a novel model called Multi-source Information Graph Embedding with Ensemble Learning for Link Prediction (EMGE), which can effectively improve the reasoning of link prediction. Ensemble learning is systematically applied throughout the model training process. At the data level, this approach enhances entity embeddings by integrating structured graph information and unstructured textual data as multi-source information inputs. The fusion of these inputs is effectively addressed by introducing an attention mechanism. During the training phase, the principle of ensemble learning is employed to extract semantic features from multiple neural network models, facilitating the interaction of enriched information. To ensure effective model learning, a novel loss function based on contrastive learning is devised, effectively minimizing the discrepancy between predicted values and the ground truth. Moreover, to enhance the semantic representation of graph nodes in link prediction, two rules are introduced during the aggregation of graph structure information. These rules incorporate the concept of spreading activation, enabling a more comprehensive understanding of the relationships between nodes and edges in the graph. During the testing phase, the EMGE model is validated on three datasets, including WN18RR, FB15k-237, and a private Chinese financial dataset. The experimental results demonstrate a reduction in the mean rank (MR) by 0.2 times, an improvement in the mean reciprocal rank (MRR) by 5.9%, and an increase in the Hit@1 by 12.9% compared to the baseline model.

Funder

National Key Research and Development Program of China

the Outstanding Academic Leader Project of Shanghai

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3