A Browser Fingerprint Authentication Scheme Based on the Browser Cache Side-Channel Technology

Author:

Yan Yiming1,Zhao Haiyong2,Qu Haipeng1

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266000, China

2. School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China

Abstract

Users encounter various threats, such as cross-site scripting attacks and session hijacking, when they perform login operations in the browser. These attacks pose significant risks to the integrity and confidentiality of personal data. The browser fingerprint, as an authentication technique, can effectively enhance user security. However, attackers can bypass browser fingerprint authentication through phishing attacks and other methods, leading to unauthorized logins. To address these issues, we propose a secure browser fingerprint authentication scheme that integrates the data of the browser cache side-channel into the traditional browser fingerprint. Consequently, it enhances the dynamics and non-determinism of the browser fingerprint and improves the anti-attack capabilities of the authentication process. Experimental results demonstrate that this scheme can effectively mitigate phishing attacks and man-in-the-middle attacks, achieving a 95.33% recognition rate for attackers and a 96.17% recall rate for authorized users.

Funder

Haiyong Zhao

Publisher

MDPI AG

Reference44 articles.

1. Usage and impact of the internet-of-things-based smart home technology: A quality-of-life perspective;Rock;Univers. Access Inf. Soc.,2024

2. Browser fingerprinting: A survey;Laperdrix;ACM Trans. Web (TWEB),2020

3. Laperdrix, P., Rudametkin, W., and Baudry, B. (2016, January 22–26). Beauty and the beast: Diverting modern web browsers to build unique browser fingerprints. Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA.

4. Social implications of the Internet;DiMaggio;Annu. Rev. Sociol.,2001

5. Ross, B., Jackson, C., Miyake, N., Boneh, D., and Mitchell, J.C. (August, January 31). Stronger Password Authentication Using Browser Extensions. Proceedings of the USENIX Security Symposium, Baltimore, MD, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3