Trademark Text Recognition Combining SwinTransformer and Feature-Query Mechanisms

Author:

Zhou Boxiu1,Wang Xiuhui1ORCID,Zhou Wenchao1,Li Longwen1

Affiliation:

1. Department of Computer Science and Technology, China Jiliang University, Hangzhou 310018, China

Abstract

The task of trademark text recognition is a fundamental component of scene text recognition (STR), which currently faces a number of challenges, including the presence of unordered, irregular or curved text, as well as text that is distorted or rotated. In applications such as trademark infringement detection and analysis of brand effects, the diversification of artistic fonts in trademarks and the complexity of the product surfaces where the trademarks are located pose major challenges for relevant research. To tackle these issues, this paper proposes a novel recognition framework named SwinCornerTR, which aims to enhance the accuracy and robustness of trademark text recognition. Firstly, a novel feature-extraction network based on SwinTransformer with EFPN (enhanced feature pyramid network) is proposed. By incorporating SwinTransformer as the backbone, efficient capture of global information in trademark images is achieved through the self-attention mechanism and enhanced feature pyramid module, providing more accurate and expressive feature representations for subsequent text extraction. Then, during the encoding stage, a novel feature point-retrieval algorithm based on corner detection is designed. The OTSU-based fast corner detector is presented to generate a corner map, achieving efficient and accurate corner detection. Furthermore, in the encoding phase, a feature point-retrieval mechanism based on corner detection is introduced to achieve priority selection of key-point regions, eliminating character-to-character lines and suppressing background interference. Finally, we conducted extensive experiments on two open-access benchmark datasets, SVT and CUTE80, as well as a self-constructed trademark dataset, to assess the effectiveness of the proposed method. Our results showed that the proposed method achieved accuracies of 92.9%, 92.3% and 84.8%, respectively, on these datasets. These results demonstrate the effectiveness and robustness of the proposed method in the analysis of trademark data.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3