SL: Stable Learning in Source-Free Domain Adaptation for Medical Image Segmentation

Author:

Wang Yan123,Chen Yixin4,Yang Tingyang5,Zhu Haogang236

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

2. Key Laboratory of Data Science and Intelligent Computing and Zhongfa Aviation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town, Yuhang District, Hangzhou 311115, China

3. State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

4. Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China

5. CNGC Institute of Computer and Electronics Application, Beijing 100089, China

6. Zhongguancun Laboratory, Beijing 100194, China

Abstract

Deep learning techniques for medical image analysis often encounter domain shifts between source and target data. Most existing approaches focus on unsupervised domain adaptation (UDA). However, in practical applications, many source domain data are often inaccessible due to issues such as privacy concerns. For instance, data from different hospitals exhibit domain shifts due to equipment discrepancies, and data from both domains cannot be accessed simultaneously because of privacy issues. This challenge, known as source-free UDA, limits the effectiveness of previous UDA medical methods. Despite the introduction of various medical source-free unsupervised domain adaptation (MSFUDA) methods, they tend to suffer from an over-fitting problem described as “longer training, worse performance”. To address this issue, we proposed the Stable Learning (SL) strategy. SL is a method that can be integrated with other approaches and consists of weight consolidation and entropy increase. Weight consolidation helps retain domain-invariant knowledge, while entropy increase prevents over-learning. We validated our strategy through experiments on three MSFUDA methods and two public datasets. For the abdominal dataset, the application of the SL strategy enables the MSFUDA method to effectively address the domain shift issue. This results in an improvement in the Dice coefficient from 0.5167 to 0.7006 for the adaptation from CT to MRI, and from 0.6474 to 0.7188 for the adaptation from MRI to CT. The same improvement is observed with the cardiac dataset. Additionally, we conducted ablation studies on the two involved modules, and the results demonstrated the effectiveness of the SL strategy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3