A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization

Author:

Zhao Xuhua12,Yang Chao3,Zhu Donglin2ORCID,Liu Yujia4

Affiliation:

1. School of Electronic Information, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322103, China

2. School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China

3. College of Information Engineering, Shenyang University, Shenyang 110044, China

4. School of Intelligent Manufacturing Engineering, Jiangxi College of Application Science and Technology, Nanchang 330100, China

Abstract

To improve the performance of the sparrow search algorithm in solving complex optimization problems, this study proposes a novel variant called the Improved Beetle Antennae Search-Based Sparrow Search Algorithm (IBSSA). A new elite dynamic opposite learning strategy is proposed in the population initialization stage to enhance population diversity. In the update stage of the discoverer, a staged inertia weight guidance mechanism is used to improve the update formula of the discoverer, promote the information exchange between individuals, and improve the algorithm’s ability to optimize on a global level. After the follower’s position is updated, the logarithmic spiral opposition-based learning strategy is introduced to disturb the initial position of the individual in the beetle antennae search algorithm to obtain a more purposeful solution. To address the issue of decreased diversity and susceptibility to local optima in the sparrow population during later stages, the improved beetle antennae search algorithm and sparrow search algorithm are combined using a greedy strategy. This integration aims to improve convergence accuracy. On 20 benchmark test functions and the CEC2017 Test suite, IBSSA performed better than other advanced algorithms. Moreover, six engineering optimization problems were used to demonstrate the improved algorithm’s effectiveness and feasibility.

Funder

University–Industry Collaborative Education Program: Design and Practice of “Data Visualization” Course Based on Blended Teaching Mode

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3