A Swarm Confrontation Method Based on Lanchester Law and Nash Equilibrium

Author:

Ji XiangORCID,Zhang Wanpeng,Xiang FengtaoORCID,Yuan WeilinORCID,Chen Jing

Abstract

In this paper, more efficient allocation of forces is analyzed in the future air confrontation among unmanned aerial vehicle swarms. A novel method is proposed for swarm confrontation based on the Lanchester law and Nash equilibrium. Due to the huge number of unmanned aerial vehicles, it is not beneficial to deploy UAV forces in swarm confrontation. Moreover, unmanned aerial vehicles do not have high maneuverability in collaboration. Therefore, we propose to divide the swarms of unmanned aerial vehicles into groups, so that swarms of both sides can fight in different battlefields, which could be considered as a Colonel Blotto Game. Inspired by the double oracle algorithm, a Nash equilibrium solving method is proposed to searched for the best force allocation of the swarm confrontation. In addition, this paper proposes the concept of the boundary contact rate and carries out quantitative numerical analysis with the Lanchester law. Experiments reveal the relationship between the boundary contact rate and the optimal strategy of swarm confrontation, which could guide the force allocation in future swarm confrontation. Furthermore, the effectiveness of the division method and the double oracle-based equilibrium solving algorithm proposed in this paper is verified.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference15 articles.

1. High-Energy Lasers: New Advances in Defense Applications

2. Multi-agent actor-critic for mixed cooperative-competitive environments;Lowe;arXiv,2017

3. Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play starcraft combat games;Peng;arXiv,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3