Abstract
With an increase in the number and types of network attacks, traditional firewalls and data encryption methods can no longer meet the needs of current network security. As a result, intrusion detection systems have been proposed to deal with network threats. The current mainstream intrusion detection algorithms are aided with machine learning but have problems of low detection rates and the need for extensive feature engineering. To address the issue of low detection accuracy, this paper proposes a model for traffic anomaly detection named a deep learning model for network intrusion detection (DLNID), which combines an attention mechanism and the bidirectional long short-term memory (Bi-LSTM) network, first extracting sequence features of data traffic through a convolutional neural network (CNN) network, then reassigning the weights of each channel through the attention mechanism, and finally using Bi-LSTM to learn the network of sequence features. In intrusion detection public data sets, there are serious imbalance data generally. To address data imbalance issues, this paper employs the method of adaptive synthetic sampling (ADASYN) for sample expansion of minority class samples, to eventually form a relatively symmetric dataset, and uses a modified stacked autoencoder for data dimensionality reduction with the objective of enhancing information fusion. DLNID is an end-to-end model, so it does not need to undergo the process of manual feature extraction. After being tested on the public benchmark dataset on network intrusion detection NSL-KDD, experimental results show that the accuracy and F1 score of this model are better than those of other comparison methods, reaching 90.73% and 89.65%, respectively.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献