HRER: A New Bottom-Up Rule Learning for Knowledge Graph Completion

Author:

Liang ZongweiORCID,Yang Junan,Liu Hui,Huang Keju,Cui Lin,Qu Lingzhi,Li Xiang

Abstract

Knowledge graphs (KGs) are collections of structured facts, which have recently attracted growing attention. Although there are billions of triples in KGs, they are still incomplete. These incomplete knowledge bases will bring limitations to practical applications. Predicting new facts from the given knowledge graphs is an increasingly important area. We investigate the models based on logic rules in this paper. This paper proposes HRER, a new bottom-up rule learning for knowledge graph completion. First of all, inspired by the observation that the known information of KGs is incomplete and unbalanced, HRER modifies the indicators for screening based on the existing relation rule mining methods. The new metric HRR is more effective than traditional confidences in filtering Horn rules. Besides, motivated by the differences between the embedding-based methods and the methods based on logic rules, HRER proposes entity rules. The entity rules make up for the limited expression of Horn rules to some extent. HRER needs a few parameters to control the number of rules and can provide the explanation for prediction. Experiments show that HRER achieves the state-of-the-art across the standard link prediction datasets.

Funder

Anhui Provincial Natural Science Foundation;Independent Scientific Research Program of National University of Defense Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Dbpedia: A nucleus for a web of open data;Auer,2007

2. YAGO: A Large Ontology from Wikipedia and WordNet

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3