Abstract
The digitalisation of freight rail is an essential improvement to create modern functions that offer a cost-effective, attractive service and improved operational opportunities to operators. These modern functions need intelligence, detection, actuation and communications. For this, generally, it is possible to process raw data in the Edge and send meaningful data over a communication link. However, the power supply is not granted in a freight wagon and so low power strategies need to be adopted. This paper presents the implementation and testing of a wireless connected heterogeneous multiprocessing architecture. From the power consumption point of view, this system has been stressed by means of a generic FFT function to evaluate the different on-board computing devices that have been decided. From the communication point of view, the LPWAN LoRa technology has been tested and validated on robustness and coverage. Thanks to the heterogeneous nature of this architecture and its configurability, it allows us to propose the most suitable computing ressources, data analysis and communication strategy in terms of efficiency and performance for the functions that this wagon on board unit needs to host and support. With this approach, operation data are reported to the centralised freight driver assistant system.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference23 articles.
1. European Partnership under Horizon Europe Transforming Europe’s Rail Systemhttps://shift2rail.org/wp-content/uploads/2020/07/20200705_Partnership_High-Level-Paper.pdf
2. Innovation Programme 5https://shift2rail.org/research-development/ip5/
3. Internet of Things for Smart Railway: Feasibility and Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献