Abstract
Recently, multi-access edge computing (MEC) cooperating with fifth-generation (5G) mobile communication technology or WiFi has been widely discussed for low-delay systems. However, for the Industrial Internet of Things, which raises higher requirements on system delay, security, capacity, etc., visible light communication (VLC) has better adaptability due to its controllable attocells. Therefore, we establish a computation and transmission integrated system with MEC-VLC as the main body. To solve the imbalance of resource utilization caused by users’ movement in intensive attocells, we propose a series of flexible design schemes based on access points’ cooperation in attocell overlapping areas. We formulate the overlap-based low-delay flexible system design as an optimization problem and then design the system based on it. Specifically, we first give an attocell-associated congestion judgment criterion and correspondingly propose a user discard algorithm. After that, we offer an iterative optimization method for task assignment, which adjusts computing-transmitting units’ cooperation mode to enhance the overall time delay. Then, the computing and transmitting resources are jointly allocated for delay reduction. Finally, our simulation demonstrates that the overlap-based design has a lower user discard ratio than the traditional distance-based system. The maximum delay and standard deviation are also reduced. Consequently, the flexible design based on attocell overlap can improve the reliability, capacity, and fairness of the low-delay integrating system.
Funder
National Key Research and Development Project
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献