Flexible Design of Low-Delay MEC-VLC Integrating Network Based on Attocell Overlap for IIoT

Author:

Xue JingshuORCID,Ye ZiweiORCID,Zhang Haiyong,Zhu YijunORCID

Abstract

Recently, multi-access edge computing (MEC) cooperating with fifth-generation (5G) mobile communication technology or WiFi has been widely discussed for low-delay systems. However, for the Industrial Internet of Things, which raises higher requirements on system delay, security, capacity, etc., visible light communication (VLC) has better adaptability due to its controllable attocells. Therefore, we establish a computation and transmission integrated system with MEC-VLC as the main body. To solve the imbalance of resource utilization caused by users’ movement in intensive attocells, we propose a series of flexible design schemes based on access points’ cooperation in attocell overlapping areas. We formulate the overlap-based low-delay flexible system design as an optimization problem and then design the system based on it. Specifically, we first give an attocell-associated congestion judgment criterion and correspondingly propose a user discard algorithm. After that, we offer an iterative optimization method for task assignment, which adjusts computing-transmitting units’ cooperation mode to enhance the overall time delay. Then, the computing and transmitting resources are jointly allocated for delay reduction. Finally, our simulation demonstrates that the overlap-based design has a lower user discard ratio than the traditional distance-based system. The maximum delay and standard deviation are also reduced. Consequently, the flexible design based on attocell overlap can improve the reliability, capacity, and fairness of the low-delay integrating system.

Funder

National Key Research and Development Project

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress on Optical Wireless Communication in Industrial Internets;Handbook of Optical Wireless Communication;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3