ACE-M: Automated Control Flow Integrity Enforcement Based on MPUs at the Function Level

Author:

Lee SungbinORCID,Cho JeonghunORCID

Abstract

Control-flow integrity(CFI) ensures that the execution flow of a program follows the control-flow graph(CFG) determined at compile time. CFI is a security technique designed to prevent runtime attacks such as return-oriented programming (ROP). With the development of the Internet of Things (IoT), the number of embedded devices has increased, and security and protection techniques in embedded systems have become important. Since the hardware-based CFI technique requires separate hardware support, it is difficult to apply to an embedded device that is already arranged. In this paper, we propose a function-level CFI technique named ACE-M, which uses the memory protection unit (MPU) included in most embedded devices. MPU may provide attributes such as read-write-execute to the memory area. ACE-M has three steps: (1) initiate—inserts an MPU-related function into a specific position; (2) profiling—provides information for MPU configuration. After the initation step, several pieces of information can be determined; (3) set—modify the already-inserted function’s arguments. We propose a design that supports the MPU. In our model, the MPU becomes a control flow monitor that detects control flow errors(CFEs), and the inserted codes cause the MPU to act as a control flow checker. If the program deviates from the original control flow, the MPU raises an exception since its corresponding area will not be included in the executable area. This approach not only verifies the target address but also guarantees the running position. Our technique can detect any modification of the program counter (PC) to an arbitrary address.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Security in embedded systems

2. Stack Smashing Vulnerabilities in the UNIX Operating System;Smith,1997

3. Smashing the stack for fun and profit;One;Phrack Mag.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3