Simulation Model for Blockchain Systems Using Queuing Theory

Author:

Memon Raheel,Li Jian,Ahmed Junaid

Abstract

In recent years, blockchains have obtained so much attention from researchers, engineers, and institutions; and the implementation of blockchains has started to revive a large number of applications ranging from e-finance, e-healthcare, smart home, Internet of Things, social security, logistics and so forth. In the literature on blockchains, it is found that most articles focused on their engineering implementation, while little attention has been devoted to the exploration of theoretical aspects of the system; however, the existing work is limited to model the mining process only. In this paper, a queuing theory-based model is proposed for understanding the working and theoretical aspects of the blockchain. We validate our proposed model using the actual statistics of two popular cryptocurrencies, Bitcoin and Ethereum, by running simulations for two months of transactions. The obtained performance measures parameters such as the Number of Transactions per block, Mining Time of Each Block, System Throughput, Memorypool count, Waiting Time in Memorypool, Number of Unconfirmed Transactions in the Whole System, Total Number of Transactions, and Number of Generated Blocks; these values are compared with actual statistics. It was found that the results gained from our proposed model are in good agreement with actual statistics. Although the simulation in this paper presents the modeling of blockchain-based cryptocurrencies only, the proposed model can be used to represent a wide range of blockchain-based systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3