Microstrip Quasi-Elliptic Absorptive Bandpass Filter with Ultra-Wide Reflectionless Range and Compact Size

Author:

Zhang Awei1ORCID,Xu Jinping1,Liu Zhiqiang2ORCID,Zhang Yuwei1ORCID

Affiliation:

1. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

2. Pervasive Communication Research Center, Purple Mountain Laboratories, Nanjing 211111, China

Abstract

Absorptive bandpass filters (ABPFs) are highly attractive in modern microwave communication systems due to their ability to internally absorb the harmful stopband RF-power reflections. This paper reports an approach to designing quasi-elliptic ABPFs with ultra-wide reflectionless range, enhanced selectivity, and compact size. The method is realized based on a fourth-order quasi-elliptic absorptive lowpass filter (ALPF) prototype with a simplified structure. This ALPF prototype exhibits both good impedance-matching over the whole normalized frequency domain and an adjustable transmission zero close to the passband. By applying an equivalent impedance transformer model, a coupled-line-based ABPF scheme is devised from the ALPF prototype, which eliminates conventional dispersive transmission line inverters, resulting in an ultra-wide reflectionless range and a compact size. Closed-form equations are derived to support the filter synthesis. A 2.45 GHz microstrip ABPF with 30% fractional bandwidth is designed for verification. The measured minimum in-band insertion loss is 0.83 dB and the reflectionless range of return loss better than 10 dB is from DC to 12.88 GHz. Both the upper and lower stopband suppression exceed 20 dB, with the upper stopband extending up to 6.80 GHz. The upper and lower out-of-band roll-off rates are 93.9 and 121.4 dB/GHz, respectively. The overall circuit size is 0.12 λg2.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3