Sparse-View Spectral CT Reconstruction Based on Tensor Decomposition and Total Generalized Variation

Author:

Li Xuru1ORCID,Wang Kun1,Xue Xiaoqin1ORCID,Li Fuzhong1

Affiliation:

1. School of Software, Shanxi Agricultural University, Jinzhong 030800, China

Abstract

Spectral computed tomography (CT)-reconstructed images often exhibit severe noise and artifacts, which compromise the practical application of spectral CT imaging technology. Methods that use tensor dictionary learning (TDL) have shown superior performance, but it is difficult to obtain a high-quality pre-trained global tensor dictionary in practice. In order to resolve this problem, this paper develops an algorithm called tensor decomposition with total generalized variation (TGV) for sparse-view spectral CT reconstruction. In the process of constructing tensor volumes, the proposed algorithm utilizes the non-local similarity feature of images to construct fourth-order tensor volumes and uses Canonical Polyadic (CP) tensor decomposition instead of pre-trained tensor dictionaries to further explore the inter-channel correlation of images. Simultaneously, introducing the TGV regularization term to characterize spatial sparsity features, the use of higher-order derivatives can better adapt to different image structures and noise levels. The proposed objective minimization model has been addressed using the split-Bregman algorithm. To assess the performance of the proposed algorithm, several numerical simulations and actual preclinical mice are studied. The final results demonstrate that the proposed algorithm has an enormous improvement in the quality of spectral CT images when compared to several existing competing algorithms.

Funder

Shanxi Province Youth Development Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3