A 5K Efficient Low-Light Enhancement Model by Estimating Increment between Dark Image and Transmission Map Based on Local Maximum Color Value Prior

Author:

Deng Qikang1ORCID,Choo Dongwon2,Ji Hyochul2,Lee Dohoon1

Affiliation:

1. Department of Information Convergence Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

2. InBic Inc., 20F, 8, Seongnam-daero 331beon-gil, Bundang-gu, Seongnam-si 13637, Republic of Korea

Abstract

Low-light enhancement (LLE) has seen significant advancements over decades, leading to substantial improvements in image quality that even surpass ground truth. However, these advancements have come with a downside as the models grew in size and complexity, losing their lightweight and real-time capabilities crucial for applications like surveillance, autonomous driving, smartphones, and unmanned aerial vehicles (UAVs). To address this challenge, we propose an exceptionally lightweight model with just around 5K parameters, which is capable of delivering high-quality LLE results. Our method focuses on estimating the incremental changes from dark images to transmission maps based on the low maximum color value prior, and we introduce a novel three-channel transmission map to capture more details and information compared to the traditional one-channel transmission map. This innovative design allows for more effective matching of incremental estimation results, enabling distinct transmission adjustments to be applied to the R, G, and B channels of the image. This streamlined approach ensures that our model remains lightweight, making it suitable for deployment on low-performance devices without compromising real-time performance. Our experiments confirm the effectiveness of our model, achieving high-quality LLE comparable to the IAT (local) model. Impressively, our model achieves this level of performance while utilizing only 0.512 GFLOPs and 4.7K parameters, representing just 39.1% of the GFLOPs and 23.5% of the parameters used by the IAT (local) model.

Funder

Ministry of Education

National Research Foundation of Kore

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3