KGCFRec: Improving Collaborative Filtering Recommendation with Knowledge Graph

Author:

Peng Jiquan12ORCID,Gong Jibing12ORCID,Zhou Chao12ORCID,Zang Qian12,Fang Xiaohan12ORCID,Yang Kailun1,Yu Jing1

Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China

Abstract

Traditional collaborative filtering (CF)-based recommendation systems are often challenged by data sparsity. The recent research has recognized the potential of integrating new information sources, such as knowledge graphs, to address this issue. However, a common drawback is the neglect of the interplay between user–item interaction data and knowledge graph information, resulting in insufficient model performance due to coarse-grained feature fusion. To bridge this gap, in this paper, we propose a novel graph neural network (GNN) model called KGCFRec, which leverages both Knowledge Graph and user–item Collaborative Filtering information for an enhanced Recommender system. KGCFRec employs a dual-channel information propagation and aggregation mechanism to generate distinct representations for the collaborative knowledge graph and the user–item interaction graph. This is followed by an attention mechanism that adaptively fuses the knowledge graph with collaborative information, thereby refining the representations and narrowing the gap between them. The experiments conducted on three real-world datasets demonstrate that KGCFRec outperforms state-of-the-art methods. These promising results underscore the capability of KGCFRec to enhance recommendation accuracy by integrating knowledge graph information.

Funder

Hebei Natural Science Foundation of China

CCF-Zhipu AI Large Model Fund

CIPSC-SMP-Zhipu

AI Large Model Cross-Disciplinary Fund and Innovation Capability Improvement Plan Project of Hebei Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3