A New Symmetrical Source-Based DC/AC Converter with Experimental Verification

Author:

Mahto Kailash Kumar1,Mahato Bidyut2ORCID,Chandan Bikramaditya3ORCID,Das Durbanjali1,Das Priyanath1,Fotis Georgios4ORCID,Vita Vasiliki4,Mann Michael5ORCID

Affiliation:

1. Department of Electrical Engineering, National Institute of Technology, Agartala 799046, India

2. Department of Electrical and Electronics Engineering, Galgotias College of Engineering & Technology, Greater Noida 201310, India

3. Department of Electrical Engineering, Indian Institute of Technology, Indian School of Mines, Dhanbad 826004, India

4. Department of Electrical and Electronics Engineering Educators, ASPETE—School of Pedagogical and Technological Education, 14121 Heraklion, Greece

5. Department of Engineering, University of Applied Sciences Aschaffenburg, 63743 Aschaffenburg, Germany

Abstract

This research paper introduces a new topology for multilevel inverters, emphasizing the reduction of harmonic distortion and the optimization of the component count. The complexity of an inverter is determined by the number of power switches, which is significantly reduced in the presented topology, as fewer switches require fewer driver circuits. In this proposed topology, a new single-phase generalized multilevel inverter is analyzed with an equal magnitude of voltage supply. A 9-level, 11-level, or 13-level symmetrical inverter with RL load is analyzed in MATLAB/Simulink 2019b and then experimentally validated using the dSPACE-1103 controller. The experimental verification of the load voltage and current with different modulation indices is also presented. The analysis of the proposed topology concludes that the total required number of components is lower than that necessary for the classical inverter topologies, as well as for some new proposed multilevel inverters that are also compared with the proposed topology in terms of gate driver circuits, power switches, and DC sources, which thereby enhances the goodness of the proposed topology. Thus, a comparison of this inverter with the other topologies validates its acceptance.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3