Detection of False Data Injection Attacks on Smart Grids Based on A-BiTG Approach

Author:

He Wei1,Liu Weifeng1ORCID,Wen Chenglin2,Yang Qingqing1

Affiliation:

1. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China

Abstract

A false data injection attack (FDIA) is the main attack method that threatens the security of smart grids. FDIAs mislead the control center to make wrong judgments by modifying the measurement data of the power grid system. Therefore, the effective and accurate detection of FDIAs is crucial for the safe operation of smart grids. However, the current deep learning-based methods do not fully exploit the short-term local characteristics and long-term dependencies of power grid data and have poor correlation with past and future time series information, resulting in a lack of credibility in the detection results. In view of this, an FDIA detection model combining a bidirectional temporal convolutional network and bidirectional gated recurrent unit with an attention mechanism (A-BiTG) was proposed. The proposed model utilizes a bidirectional time convolutional network (BiTCN) and bidirectional gated recurrent unit (BiGRU) to consider past and future temporal information in the grid. This enhances the ability of the model to capture long-term dependencies and extract features, while also solving the model’s problem of exploding and vanishing gradients. In addition, an attention mechanism (AM) was added to dynamically assign weights to the extracted feature information and retain the most valuable features to improve the detection accuracy of the model. Finally, the proposed method was compared with existing methods on the IEEE 14-bus and IEEE 118-bus test systems. The results show that the proposed detection model is more robust and superior under different noise environments and FDIA signals with different intensities.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3