Hierarchical Vector-Quantized Variational Autoencoder and Vector Credibility Mechanism for High-Quality Image Inpainting

Author:

Li Cheng1,Xu Dan1ORCID,Chen Kuai2

Affiliation:

1. School of Information Science and Engineering, Yunnan University, Kunming 650106, China

2. School of Government, Yunnan University, Kunming 650106, China

Abstract

Image inpainting infers the missing areas of a corrupted image according to the information of the undamaged part. Many existing image inpainting methods can generate plausible inpainted results from damaged images with the fast-developed deep-learning technology. However, they still suffer from over-smoothed textures or textural distortion in the cases of complex textural details or large damaged areas. To restore textures at a fine-grained level, we propose an image inpainting method based on a hierarchical VQ-VAE with a vector credibility mechanism. It first trains the hierarchical VQ-VAE with ground truth images to update two codebooks and to obtain two corresponding vector collections containing information on ground truth images. The two vector collections are fed to a decoder to generate the corresponding high-fidelity outputs. An encoder then is trained with the corresponding damaged image. It generates vector collections approximating the ground truth by the help of the prior knowledge provided by the codebooks. After that, the two vector collections pass through the decoder from the hierarchical VQ-VAE to produce the inpainted results. In addition, we apply a vector credibility mechanism to promote vector collections from damaged images and approximate vector collections from ground truth images. To further improve the inpainting result, we apply a refinement network, which uses residual blocks with different dilation rates to acquire both global information and local textural details. Extensive experiments conducted on several datasets demonstrate that our method outperforms the state-of-the-art ones.

Funder

National Natural Science Foundation of China

Yunnan Province Ten Thousand Talents Program and Yunling Scholars Special Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3