A Novel Direct Current Circuit Breaker with a Gradually Increasing Counter-Current

Author:

Chen Jinchao1ORCID,Liu Siyuan1ORCID,Jin Jingyong1,Chen Yifan1,Liu Zhiyuan1,Geng Yingsan1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

A reliable and cost-effective mechanical direct current circuit breaker (DCCB) is a promising solution for DC interruption. However, the typical mechanical DCCB has difficulty in interrupting a rated current, because the high oscillating current superimposed on the rated current generates a steep current slope at current zero-crossing (CZC) points, which makes it difficult for the vacuum interrupter to extinguish the arc. The objective of this paper is to present a novel DCCB topology with a gradually increasing counter-current. It utilizes a full-controlled converter, a semi-controlled full bridge, and an LC oscillation branch to generate a gradually increasing counter-current, which is superimposed on any fault current and generates a smooth current slope at CZC points. The proposed DCCB topology is modeled with PSCAD, and the current slope and the initial transient interruption voltage (ITIV) at CZC are analyzed and compared with the typical mechanical DCCB. The results indicate that the current slope at CZC decreases by 57–84% in full-range current interruptions, and the ITIV can be reduced by the same extent. Additionally, the performance of the proposed DCCB is evaluated in a four-terminal HVDC system. A cost and performance comparison is conducted among the main topologies. The obtained results show that the proposed DCCB is a reliable solution for the multi-terminal HVDC system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Southern Power Grid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3