The Quasi-Resonant Structure and Control Strategy of a Photovoltaic Flyback Grid-Connected Microinverter

Author:

Cao Zipei12,Jamali Annisa binti1,Yassin Abdullah1,Huang Ya3

Affiliation:

1. Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia

2. Faculty of Intelligent Manufacturing and Automotive Engineering, Anhui Business and Technology College, Hefei 231131, China

3. Hefei Institutes of Physical Science, University of Science and Technology of China, Hefei 231131, China

Abstract

This study proposes a topology structure for a flyback grid-connected inverter with a compensation capacitor. The addition of the compensation capacitor structure increases the harmonic oscillation period and reduces the switching frequency. Additionally, a control strategy for the microinverter is proposed. By using an accurate peak current reference curve, the system ensures precise turn-off signals, thus reducing the harmonic content of the grid-connected current. Simultaneously, the multi-valley turn-on strategy is employed to address the issue of high switching frequency, minimising the impact of energy. The proposed topology structure and control methods are modelled, simulated, and tested to validate the feasibility of the microinverter topology structure and the effectiveness of the control strategy, achieving a maximum efficiency of 95.2% and controlling the total harmonic distortion (THD) below 2.39%. Compared to other microinverter products, it is more efficient and stable.

Funder

Natural Science Research Project of Anhui Educational Committee of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3