Stower-13: A Multi-View Inspection Image Dataset for the Automatic Classification and Naming of Tension Towers

Author:

Lu Yaolin1ORCID,Zheng Enhui1ORCID,Chen Yifu1ORCID,Wu Kaijun1ORCID,Yang Zhonghao1ORCID,Yuan Jiayu1ORCID,Xie Min1

Affiliation:

1. School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

In high-voltage transmission lines, the tension tower needs to withstand the tension load of the overhead power line for a long time, which is prone to damage, and it is an important part of the inspection in the circuit inspection. In the modern circuit inspection process, operation and maintenance personnel mostly use unmanned aerial vehicles (UAVs) to photograph various parts of the tension tower, obtain inspection images, and manually classify and name the massive inspection images, which is low in accuracy and efficiency. Based on the above problems, this paper collects a large number of real-life UAV inspection images of various parts of a tension tower, and proposes the Stower-13 inspection image dataset, which is used to train the classification model to achieve automatic classification and naming of inspection images. Based on this dataset, this paper also proposes an improved MobileViT model, in which the Scale-Correlated Pyramid Convolution Block Attention Block (SCPCbam) module is introduced, which adds the Convolution Block Attention Module (CBAM) to the four branches of the original Scale-Correlated Pyramid Convolution (SCPC) module, so as to strengthen the ability of image multi-scale information extraction and improve the classification accuracy. This paper discusses a number of experiments on the model, and the experimental results show that the dataset proposed in this paper helps the model to understand the feature information. At the same time, the improved MobileViT model has a strong ability to extract image spatial feature information, the classification accuracy is higher than that of other models of the same type, so it is able to cope with a wide range of problems that arise in the course of practice, and it meets the practical needs of automatically naming transmission line inspection images.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3